728x90 전체 글880 [머신러닝] 차원 축소 - PCA 차원 축소란? [머신러닝] 차원 축소(Dimension Reduction)차원 축소(Dimension Reduction)차원 축소의 중요한 의미는차원 축소를 통해 좀 더 데이터를 잘 설명할 수 있는잠재적인 요소를 추출하는 데 있다.차원 축소: 매우 많은 피처로 구성된 다차원 데이터puppy-foot-it.tistory.comPCA(Principal Component Analysis, 주성분 분석)주성분 분석(PCA)은 원본 데이터의 피처 개수에 비해매우 작은 주성분으로 원본 데이터의 총 변동성을 대부분 설명할 수 있는 분석법이다. PCA는 대표적인 차원 축소 기법이며, 여러 변수 간에 존재하는 상관관계를 이용해 이를 대표하는 주성분을 추출해 차원을 축소하는 기법이며, PCA는 입력 데이터의 변동성이 가장.. 2024. 10. 24. [머신러닝] 차원 축소(Dimension Reduction) 머신러닝 기반 분석 모형 선정 [머신러닝] 머신러닝 기반 분석 모형 선정머신러닝 기반 분석 모형 선정 지도 학습, 비지도 학습, 강화 학습, 준지도 학습, 전이 학습 1) 지도 학습: 정답인 레이블(Label)이 포함되어 있는 학습 데이터를 통해 컴퓨터를 학습시키는 방법(puppy-foot-it.tistory.com차원 축소(Dimension Reduction)차원 축소의 중요한 의미는차원 축소를 통해 좀 더 데이터를 잘 설명할 수 있는잠재적인 요소를 추출하는 데 있다.차원 축소: 매우 많은 피처로 구성된 다차원 데이터 세트의 차원을 축소해 새로운 차원의 데이터를 생성하는 것.일반적으로 차원이 증가할수록 데이터 포인트 간의 거리가 기하급수적으로 멀어지게 되고, 희소한 구조를 가지게 되며 피처가 많을.. 2024. 10. 24. [머신러닝] 회귀 - 캐글 주택 가격 회귀 관련 내용[머신러닝] 회귀(Regression)[머신러닝]경사 하강법(GD, gradient descent)[머신러닝] 회귀 - LinearRegression 클래스[머신러닝] 회귀 - 다항 회귀와 과대(과소) 적합[머신러닝] 회귀 - 규제 선형 모델: 릿지, 라쏘, 엘라스틱넷[머신러닝] 로지스틱 회귀[머신러닝] 회귀 트리캐글 주택 가격 실습 (고급 회귀 기법) 이번에는 캐글에서 제공하는캐글 주택 가격: 고급 회귀 기법(House Prices: Advanced Regression Techniques) 데이터 세트를 이용해 회귀 분석을 더 심층적으로 학습해 본다.캐글(하단 링크)에 접속하여 해당 실습의 데이터 (train.csv)를 다운 받는다. (로그인 및 경쟁 규칙 동의 필요) House Pric.. 2024. 10. 23. [머신러닝] 회귀 - 자전거 대여 수요 예측 회귀 관련 내용[머신러닝] 회귀(Regression)[머신러닝]경사 하강법(GD, gradient descent)[머신러닝] 회귀 - LinearRegression 클래스[머신러닝] 회귀 - 다항 회귀와 과대(과소) 적합[머신러닝] 회귀 - 규제 선형 모델: 릿지, 라쏘, 엘라스틱넷[머신러닝] 로지스틱 회귀[머신러닝] 회귀 트리자전거 대여 수요 예측 실습 캐글의 자전거 대여 수요 예측 경연에서 사용된 학습 데이터 세트를 이용해 선형 회귀와 트리 기반 회귀 비교 [Bike Sharing Demand] 자전거 수요 예측 데이터 분석Explore and run machine learning code with Kaggle Notebooks | Using data from Bike Sharing Demandwww.. 2024. 10. 23. [머신러닝] 회귀 트리 이전 내용 [머신러닝] 로지스틱 회귀이전 내용 [머신러닝] 회귀 - 규제 선형 모델: 릿지, 라쏘, 엘라스틱넷이전 내용 [머신러닝] 회귀 - 다항 회귀와 과대(과소) 적합이전 내용 [머신러닝] 회귀 - LinearRegression 클래스사이킷런 LinearRegpuppy-foot-it.tistory.com회귀 트리 트리 기반의 회귀는 회귀 트리를 이용하는 것인데, 회귀를 위한 트리를 생성하고 이를 기반으로 회귀 예측을 하는 것이다. [분류 트리와 회귀 트리의 차이]분류 트리와 회귀 트리는 모두 기계 학습의 다양한 유형의 예측 작업에 사용되는 의사 결정 트리 유형이며, 주요 차이점은 다음과 같다.1.출력 유형:분류 트리: 범주형 출력에 사용. 목표는 데이터를 사전 정의된 카테고리 또는 클래스로 분류하는 .. 2024. 10. 23. [머신러닝] 로지스틱 회귀 이전 내용 [머신러닝] 회귀 - 규제 선형 모델: 릿지, 라쏘, 엘라스틱넷이전 내용 [머신러닝] 회귀 - 다항 회귀와 과대(과소) 적합이전 내용 [머신러닝] 회귀 - LinearRegression 클래스사이킷런 LinearRegression scikit-learn: machine learning in Python — scikit-learn 1.5.2 documentationCopuppy-foot-it.tistory.com로지스틱 회귀 로지스틱 회귀는 선형 회귀 방식을 분류에 적용한 알고리즘으로, 분류에 사용된다.회귀는 가중치 변수가 선형 인지 아닌지에 따라 선형 또는 비선형으로 나뉜다.로지스틱 회귀가 선형 회귀와 다른 점은 학습을 통해 선형 함수의 회귀 최적선을 찾는 게 아니라 시그모이드 함수 최적선.. 2024. 10. 23. [머신러닝] 회귀 - 규제 선형 모델: 릿지, 라쏘, 엘라스틱넷 이전 내용 [머신러닝] 회귀 - 다항 회귀와 과대(과소) 적합이전 내용 [머신러닝] 회귀 - LinearRegression 클래스사이킷런 LinearRegression scikit-learn: machine learning in Python — scikit-learn 1.5.2 documentationComparing, validating and choosing parameters and models. Applications: Improvepuppy-foot-it.tistory.com규제 선형 모델 좋은 머신러닝 회귀 모델은 적절히 데이터에 적합하면서도 회귀 계수가 기하급수적으로 커지는 것을 제어할 수 있어야 한다. 이전까지 선형 모델의 비용 함수는 실제 값과 예측값의 차이 (RSS)를 최소화하는 것.. 2024. 10. 22. [머신러닝] 회귀 - 다항 회귀와 과대(과소) 적합 이전 내용 [머신러닝] 회귀 - LinearRegression 클래스사이킷런 LinearRegression scikit-learn: machine learning in Python — scikit-learn 1.5.2 documentationComparing, validating and choosing parameters and models. Applications: Improved accuracy via parameter tuning. Algorithms: Grid search, cross vpuppy-foot-it.tistory.com다항 회귀 이해 - 다항 (Polynomial) 회귀: 회귀가 독립변수의 단항식이 아닌 2차, 3차 방정식과 같은 다항식으로 표현되는 것. 회귀에서 선형 회귀/비선형.. 2024. 10. 22. [머신러닝] 회귀 - LinearRegression 클래스 사이킷런 LinearRegression scikit-learn: machine learning in Python — scikit-learn 1.5.2 documentationComparing, validating and choosing parameters and models. Applications: Improved accuracy via parameter tuning. Algorithms: Grid search, cross validation, metrics, and more...scikit-learn.org LinearRegression 클래스는 예측값과 실제 값의 RSS(Residual Sum of Squares)를 최소화해 OLS(Ordinary Least Squares) 추정 방식으로 구현한.. 2024. 10. 21. [파이썬+통계학] 현대통계학 연습문제 파이썬 구현(ch.11) - 2 ★ 시작에 앞서 ★ 해당 내용은 ', 다산출판사, 2024' 에 나와있는 챕터별 연습문제를 교재를 응용하여 풀이하고, 수학적인 문제에 대한 답변을 파이썬으로 구현해보기 위해 작성하는 글이다.해당 답변을 구현하는 방식은 답안지 없이 필자가 스스로 구현하는 것이므로, 정확한 (혹은 가장 효과적인) 답변이 아닐 수 있다. 이 글의 목적은 통계학 공부와 파이썬 프로그래밍 언어 공부를 동시에 하고자 함이며, 통계학을 공부하고 싶으신 분들은 해당 교재를 구매하는 것을 추천한다.또한, 연습문제 번호 및 문제 내용은 필자가 임의대로 작성하였으며, 교재와는 다를 수 있다. 잘못된 부분이 있다면 언제든 피드백 부탁 드립니다! 감사합니다이전 내용 [파이썬+통계학] 현대통계학 연습문제 파이썬 구현(ch.11) - 1★ 시작에.. 2024. 10. 21. [파이썬+통계학] 현대통계학 연습문제 파이썬 구현(ch.11) - 1 ★ 시작에 앞서 ★ 해당 내용은 ', 다산출판사, 2024' 에 나와있는 챕터별 연습문제를 교재를 응용하여 풀이하고, 수학적인 문제에 대한 답변을 파이썬으로 구현해보기 위해 작성하는 글이다.해당 답변을 구현하는 방식은 답안지 없이 필자가 스스로 구현하는 것이므로, 정확한 (혹은 가장 효과적인) 답변이 아닐 수 있다. 이 글의 목적은 통계학 공부와 파이썬 프로그래밍 언어 공부를 동시에 하고자 함이며, 통계학을 공부하고 싶으신 분들은 해당 교재를 구매하는 것을 추천한다.또한, 연습문제 번호 및 문제 내용은 필자가 임의대로 작성하였으며, 교재와는 다를 수 있다. 잘못된 부분이 있다면 언제든 피드백 부탁 드립니다! 감사합니다이전 내용 [파이썬+통계학] 현대통계학 연습문제 파이썬 구현(ch.10)★ 시작에 앞서 .. 2024. 10. 21. [파이썬+통계학] 현대통계학 연습문제 파이썬 구현(ch.10) ★ 시작에 앞서 ★ 해당 내용은 ', 다산출판사, 2024' 에 나와있는 챕터별 연습문제를 교재를 응용하여 풀이하고, 수학적인 문제에 대한 답변을 파이썬으로 구현해보기 위해 작성하는 글이다.해당 답변을 구현하는 방식은 답안지 없이 필자가 스스로 구현하는 것이므로, 정확한 (혹은 가장 효과적인) 답변이 아닐 수 있다. 이 글의 목적은 통계학 공부와 파이썬 프로그래밍 언어 공부를 동시에 하고자 함이며, 통계학을 공부하고 싶으신 분들은 해당 교재를 구매하는 것을 추천한다.또한, 연습문제 번호 및 문제 내용은 필자가 임의대로 작성하였으며, 교재와는 다를 수 있다. 잘못된 부분이 있다면 언제든 피드백 부탁 드립니다! 감사합니다이전 내용 [파이썬+통계학] 현대통계학 연습문제 파이썬 구현(ch.9)-2★ 시작에 앞서.. 2024. 10. 20. 이전 1 ··· 32 33 34 35 36 37 38 ··· 74 다음 728x90