TOP
class="layout-aside-left paging-number">
본문 바로가기
728x90

사이킷런17

[딥러닝] 케라스로 다층 퍼셉트론 구현하기 - 2 인공 신경망  [딥러닝] 인공 신경망(ANN)머신러닝 기반 분석 모형 선정  [머신러닝] 머신러닝 기반 분석 모형 선정머신러닝 기반 분석 모형 선정   지도 학습, 비지도 학습, 강화 학습, 준지도 학습, 전이 학습 1) 지도 학습: 정답인 레puppy-foot-it.tistory.com퍼셉트론(perceptron), 다층 퍼셉트론 (MLP) [딥러닝] 인공 신경망: 퍼셉트론, 다층 퍼셉트론머신러닝 기반 분석 모형 선정 [머신러닝] 머신러닝 기반 분석 모형 선정머신러닝 기반 분석 모형 선정   지도 학습, 비지도 학습, 강화 학습, 준지도 학습, 전이 학습 1) 지도 학습: 정답인 레이puppy-foot-it.tistory.com이전 내용 [딥러닝] 케라스로 다층 퍼셉트론 구현하기 - 1인공 신경망 [딥.. 2024. 11. 20.
[머신러닝] 차원 축소: 주성분 분석 (추가) 차원 축소란? [머신러닝] 차원 축소(Dimension Reduction)차원 축소(Dimension Reduction)차원 축소의 중요한 의미는차원 축소를 통해 좀 더 데이터를 잘 설명할 수 있는잠재적인 요소를 추출하는 데 있다.차원 축소: 매우 많은 피처로 구성된 다차원 데이터puppy-foot-it.tistory.com주성분 분석(PCA) 주성분 분석(principal component analysis)은 가장 인기 있는 차원 축소 알고리즘이다. 먼저 데이터에 가장 가까운 초평면을 정의한 다음, 데이터를 이 평면에 투영시킨다. [보다 자세한 내용] [머신러닝] 차원 축소 - PCA차원 축소란? [머신러닝] 차원 축소(Dimension Reduction)차원 축소(Dimension Reduction).. 2024. 11. 15.
[머신러닝] 캘리포니아 주택 가격 프로젝트-1 ◆ 프로젝트: 캘리포니아 주택 가격 데이터셋을 이용한 머신러닝 프로젝트이 데이터셋은 1990년 캘리포니아 인구 조사 데이터를 기반으로 하며, 진행할 주요 단계는 아래와 같다.데이터 준비데이터로부터 인사이트를 얻기 위해 탐색하고 시각화모델 선택하고 훈련모델 미세 튜닝솔루션 제시시스템 론칭, 모니터링, 유지보수데이터 준비 및 탐색하기 모든 데이터가 들어 있는 CSV 파일인 housing.csv를 압축한 housing.tgz 파일을 내려받는데, 데이터를 수동으로 내려받아 압축을 푸는 대신 이를 위한 함수를 작성하는 것이 일반적으로 낫다. 특히 데이터가 정기적으로 바뀌는 경우에 유용하며, 최근 데이터를 내려받기 위해 이 함수를 사욯아는 짧은 스크립트를 작성할 수 있다.데이터를 내려받는 일을 자동화하면 여러 기기.. 2024. 11. 7.
[머신러닝] 텍스트 분석: 문서 유사도 텍스트 분석이란? [머신러닝] 텍스트 분석이전 내용 [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔puppy-foot-it.tistory.com이전 내용 [머신러닝] 텍스트 분석: 문서 군집화텍스트 분석이란? [머신러닝] 텍스트 분석이전 내용 [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이puppy-foot-it.tistory.com문서 유사도 문서와 문서 간의 유사도 비교는 일반적으로 코사인 유사도(Cosine Similarity)를 사.. 2024. 10. 31.
[머신러닝] 차원 축소 - PCA 차원 축소란? [머신러닝] 차원 축소(Dimension Reduction)차원 축소(Dimension Reduction)차원 축소의 중요한 의미는차원 축소를 통해 좀 더 데이터를 잘 설명할 수 있는잠재적인 요소를 추출하는 데 있다.차원 축소: 매우 많은 피처로 구성된 다차원 데이터puppy-foot-it.tistory.comPCA(Principal Component Analysis, 주성분 분석)주성분 분석(PCA)은 원본 데이터의 피처 개수에 비해매우 작은 주성분으로 원본 데이터의 총 변동성을 대부분 설명할 수 있는 분석법이다. PCA는 대표적인 차원 축소 기법이며, 여러 변수 간에 존재하는 상관관계를 이용해 이를 대표하는 주성분을 추출해 차원을 축소하는 기법이며, PCA는 입력 데이터의 변동성이 가장.. 2024. 10. 24.
[머신러닝] 차원 축소(Dimension Reduction) 머신러닝 기반 분석 모형 선정  [머신러닝] 머신러닝 기반 분석 모형 선정머신러닝 기반 분석 모형 선정   지도 학습, 비지도 학습, 강화 학습, 준지도 학습, 전이 학습 1) 지도 학습: 정답인 레이블(Label)이 포함되어 있는 학습 데이터를 통해 컴퓨터를 학습시키는 방법(puppy-foot-it.tistory.com차원 축소(Dimension Reduction)차원 축소의 중요한 의미는차원 축소를 통해 좀 더 데이터를 잘 설명할 수 있는잠재적인 요소를 추출하는 데 있다.차원 축소: 매우 많은 피처로 구성된 다차원 데이터 세트의 차원을 축소해 새로운 차원의 데이터를 생성하는 것.일반적으로 차원이 증가할수록 데이터 포인트 간의 거리가 기하급수적으로 멀어지게 되고, 희소한 구조를 가지게 되며 피처가 많을.. 2024. 10. 24.
[머신러닝] 로지스틱 회귀 이전 내용 [머신러닝] 회귀 - 규제 선형 모델: 릿지, 라쏘, 엘라스틱넷이전 내용 [머신러닝] 회귀 - 다항 회귀와 과대(과소) 적합이전 내용 [머신러닝] 회귀 - LinearRegression 클래스사이킷런 LinearRegression   scikit-learn: machine learning in Python — scikit-learn 1.5.2 documentationCopuppy-foot-it.tistory.com로지스틱 회귀 로지스틱 회귀는 선형 회귀 방식을 분류에 적용한 알고리즘으로, 분류에 사용된다.회귀는 가중치 변수가 선형 인지 아닌지에 따라 선형 또는 비선형으로 나뉜다.로지스틱 회귀가 선형 회귀와 다른 점은 학습을 통해 선형 함수의 회귀 최적선을 찾는 게 아니라 시그모이드 함수 최적선.. 2024. 10. 23.
[머신러닝] 회귀 - 다항 회귀와 과대(과소) 적합 이전 내용 [머신러닝] 회귀 - LinearRegression 클래스사이킷런 LinearRegression   scikit-learn: machine learning in Python — scikit-learn 1.5.2 documentationComparing, validating and choosing parameters and models. Applications: Improved accuracy via parameter tuning. Algorithms: Grid search, cross vpuppy-foot-it.tistory.com다항 회귀 이해 - 다항 (Polynomial) 회귀: 회귀가 독립변수의 단항식이 아닌 2차, 3차 방정식과 같은 다항식으로 표현되는 것. 회귀에서 선형 회귀/비선형.. 2024. 10. 22.
[머신러닝] 회귀 - LinearRegression 클래스 사이킷런 LinearRegression   scikit-learn: machine learning in Python — scikit-learn 1.5.2 documentationComparing, validating and choosing parameters and models. Applications: Improved accuracy via parameter tuning. Algorithms: Grid search, cross validation, metrics, and more...scikit-learn.org LinearRegression 클래스는 예측값과 실제 값의 RSS(Residual Sum of Squares)를 최소화해 OLS(Ordinary Least Squares) 추정 방식으로 구현한.. 2024. 10. 21.
[개발자를 위한 수학] 신경망 - 2 이전 내용 [개발자를 위한 수학] 신경망 - 1신경망(neural network) 신경망은 입력 변수와 출력 변수 사이에 가중치, 편향, 비선형 함수로 이루어진 층을 쌓아 구성한다.딥러닝(Deep learning)은 신경망의 한 종류이며, 가중치와 편향을 가진 노드(puppy-foot-it.tistory.com역전파 딥러닝에서 순전파(forward propagation)는 Neural Network 모델의 입력층부터 출력층까지 순서대로 변수들을 계산하고 저장하는 것을 의미한다. 순전파가 입력층에서 출력층으로 향한다면 역전파는 반대로 출력층에서 입력층 방향으로 계산하면서 가중치를 업데이트해간다. [이전 포스팅에서 진행했던 무작위한 가중치와 편향값을 사용하는 간단한 정방향 계산 코드]import numpy .. 2024. 10. 20.
[개발자를 위한 수학] 로지스틱 회귀와 분류 - 1 로지스틱 회귀(logistic regression) 하나 이상의 독립 변수가 주어졌을 때 결과의 확률을 예측하는 알고리즘. 로지스틱은 선형 회귀와 유사하게 선형 방정식을 기반으로 하지만, 선형 회귀와는 달리 실수가 아닌 범주를 예측하는 분류 알고리즘이다. (회귀는 예측 결과가 실수인지 범주인지를 기준으로 구분 되며, 회귀는 실수, 분류는 범주로 구분 된다.)로지스틱 회귀는 이산형 (이진수 1 또는 0) 또는 범주형(정수)인 출력 변수를 위해 훈련되며, 확률 형태의 연속형 값을 출력하지만 임곗값을 사용해 이산형 값으로 변환할 수 있다.로지스틱 회귀는 구현하기 쉽고 이상치와 기타 데이터 문제에 상당히 탄력적이기 때문에 로지스틱 회귀를 사용하면 많은 머신러닝 문제를 잘 해결할 수 있으며, 다른 유형의 지도 학.. 2024. 10. 18.
[머신러닝] 타이타닉 생존자 예측 시작에 앞서해당 내용은 ' 권철민 지음. 위키북스' 를 토대로 작성되었습니다. 보다 자세한 내용은 해당 서적에 상세히 나와있으니 서적을 참고해 주시기 바랍니다. 사이킷런으로 수행하는 타이타닉 생존자 예측 1. 분석에 필요한 라이브러리, 시각화 패키지, 파일 불러오기 2. 데이터 칼럼 타입 확인하기Range Index: DataFrame 인덱스의 범위 (전체 로우 수)Data Columns: 전체 칼럼 수dtypes: 데이터 타입판다스의 object 타입 = string 타입판다스는 넘파이 기반으로 만들어졌고 넘파이의 String 타입이 길이 제한이 있어서 이에 대한 구분을 위해 object 타입으로 명기전체 891개 데이터 중 Null 값이 있는 칼럼은 'Age', 'Cabin', 'Embarked'3... 2024. 6. 9.
[머신러닝] 사이킷런의 model_selection 모듈 시작에 앞서해당 내용은 ' 권철민 지음. 위키북스' 를 토대로 작성되었습니다. 보다 자세한 내용은 해당 서적에 상세히 나와있으니 서적을 참고해 주시기 바랍니다. 네이버 도서책으로 만나는 새로운 세상search.shopping.naver.com Model Selection 모듈 소개 사이킷런의 model_selection 모듈은 학습 데이터와 테스트 데이터 세트를 분리하거나 교차 검증 분할 및 평가, 그리고 Estimator의 하이퍼 파라미터 (초매개변수)를 튜닝하기 위한 다양한 함수와 클래스를 제공한다. model_selection 모듈은 머신러닝 모델을 만들 때, 데이터를 효율적으로 나누고 평가하기 위해 사용되는 Python의 scikit-learn 라이브러리의 일부이며, 이 모듈은 다음과 같은 주요 .. 2024. 6. 7.
[머신러닝] 사이킷런에 내장된 예제 데이터 세트 시작에 앞서해당 내용은 ' 권철민 지음. 위키북스' 를 토대로 작성되었습니다. 보다 자세한 내용은 해당 서적에 상세히 나와있으니 서적을 참고해 주시기 바랍니다. 네이버 도서책으로 만나는 새로운 세상search.shopping.naver.com 이전 내용 [파이썬] 사이킷런 주요 모듈시작에 앞서해당 내용은 ' 권철민 지음. 위키북스' 를 토대로 작성되었습니다. 보다 자세한 내용은 해당 서적에 상세히 나와있으니 서적을 참고해 주시기 바랍니다. 네이버 도서책으로 만나는puppy-foot-it.tistory.com내장된 예제 데이터 세트 사이킷런에는 별도의 예제로 활용할 수 있는 간단하면서도 좋은 데이터 세트가 내장되어 있다.이 데이터는 datasets 모듈에 있는 여러 API를 호출해 만들 수 있다.사이킷런에.. 2024. 5. 30.
[머신러닝] 사이킷런 주요 모듈 시작에 앞서해당 내용은 ' 권철민 지음. 위키북스' 를 토대로 작성되었습니다. 보다 자세한 내용은 해당 서적에 상세히 나와있으니 서적을 참고해 주시기 바랍니다. 네이버 도서책으로 만나는 새로운 세상search.shopping.naver.com Estimator 이해 및 fit( ), predict( ) 메서드 사이킷런은 ML 모델 학습을 위해 fit( ), 학습된 모델의 예측을 위해 predict( ) 메서드 제공.' ◆ 지도학습에서의 사이킷런 클래스(분류, 회귀, Estimator)지도학습의 주요 두 축인 분류와 회귀의 다양한 알고리즘을 구현한 모든 사이킷런 클래스는 위의 두 메서드만을 이용해 간단하게 학습과 예측 결과를 반환한다.Classifier: 분류 알고리즘을 구현한 클래스Regressor: 회.. 2024. 5. 30.
728x90