728x90 gradient descent1 [머신러닝] 경사 하강법(GD, gradient descent) 경사하강법 경사하강법(GD, gradient descent)은 여러 종류의 문제에서 최적의 해법을 찾을 수 있는 일반적인 최적화 알고리즘이다. 경사 하강법의 기본 아이디어는 비용 함수를 최소화하기 위해 반복해서 파라미터를 조정해 가는 것이다.파라미터 벡터에 대해 비용 함수의 현재 그레이디언트를 계산하고 그 그레이디언트가 감소하는 방향으로 진행한다. 이 그레이디언트가 0이 되면 최소값에 도달한 것이다. 머신러닝 회귀 알고리즘은 데이터를 계속 학습하면서 비용 함수가 반환하는 오류 값을 지속해서 감소시키고 최종적으로는 더 이상 감소하지 않는 최소의 오류 값을 구하는 것인데, 어떻게 비용 함수가 최소가 되는 W 파라미터를 구할 수 있을까?★ W 파라미터 (Weight) : 가중치 W 파라미터의 개수가 적다면 고.. 2024. 9. 22. 이전 1 다음 728x90