728x90 잔차2 [개발자를 위한 수학] 선형회귀 - 1 선형 회귀(linear regression) 데이터 과학과 통계학의 핵심인 선형 회귀는 관측 데이터에 맞는 직선을 훈련하고, 이를 통해 변수 간의 선형 관계를 보여주고 새로운 데이터에 대한 예측을 만든다. 입력 변수가 하나일 경우 선형 회귀는 직선의 방정식을 훈련하고, 두 개면 평면의 방정식을, 세 개 이상이면 초평면의 방정식을 훈련한다.- 회귀: 관측 데이터에서 어떤 함수를 훈련한 다음 새로운 데이터에 대한 예측을 만드는 방법.기본 선형 회귀 간단한 데이터 셋으로 복잡한 기법을 이해할 수 있으면 복잡한 데이터 없이도 알고리즘의 강점과 한계를 파악할 수 있다. 선형 상관관계가 나타난다는 의미는,변수 중 하나가 증가 (또는 감소)하면 다른 변수도 대략 이에 비례해 증가 (또는 감소) 한다는 것이고, 이.. 2024. 10. 16. [머신러닝] 회귀(Regression) 머신러닝 기반 분석 모형 선정 [머신러닝] 머신러닝 기반 분석 모형 선정머신러닝 기반 분석 모형 선정 지도 학습, 비지도 학습, 강화 학습, 준지도 학습, 전이 학습 1) 지도 학습: 정답인 레이블(Label)이 포함되어 있는 학습 데이터를 통해 컴퓨터를 학습시키는 방법(puppy-foot-it.tistory.com회귀(Regression) 회귀 분석은 데이터 값이 평균과 같은 일정한 값으로 돌아가려는 경향을 이용한 통계학 기법이다.회귀는 여러 개의 독립변수와 한 개의 종속변수 간의 상관관계를 모델링하는 기법을 통칭한다. 예를 들어 집의 방 개수, 방 크기, 주변 학군 등 여러 개의 독립변수에 따라 주택 가격이라는 종속변수가 어떤 관계를 나타내는지를 모델링하고 예측하는 것이다.머신러닝 관점에서 보면.. 2024. 9. 21. 이전 1 다음 728x90