TOP
본문 바로가기
📚 목차
728x90

전체 글880

[머신러닝] 텍스트 분석: 텍스트 정규화 텍스트 분석이란? [머신러닝] 텍스트 분석이전 내용 [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔puppy-foot-it.tistory.com텍스트 정규화 ◆ 텍스트 정규화:텍스트를 피처화 하기 전에, 텍스트를 가공하는 준비 작업이 필요한데, 텍스트를 머신러닝 알고리즘이나 NLP 애플리케이션에 입력 데이터로 사용하기 위해 클렌징, 정제, 토큰화, 어근화 등의 다양한 텍스트 데이터의 사전 작업을 수행하는 것을 의미. [텍스트 정규화 작업 분류]클렌징(Cleansing): 텍스트에서 분석에 방해가 되는 불필요한 문자, 기호 등을 사전에 제거하는 작업... 2024. 10. 29.
[머신러닝] 텍스트 분석 머신러닝 기반 분석 모형 선정  [머신러닝] 머신러닝 기반 분석 모형 선정머신러닝 기반 분석 모형 선정   지도 학습, 비지도 학습, 강화 학습, 준지도 학습, 전이 학습 1) 지도 학습: 정답인 레이블(Label)이 포함되어 있는 학습 데이터를 통해 컴퓨터를 학습시키는 방법(puppy-foot-it.tistory.com이전 내용 [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔진, 이미지 분할, 준지도 학습, 차원 축소puppy-foot-it.tistory.com텍스트 분석 vs NLP [NLP, Natural Language Processing]머.. 2024. 10. 28.
[머신러닝] 군집화: 실습 - 고객 세그먼테이션 군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔진, 이미지 분할, 준지도 학습, 차원 축소puppy-foot-it.tistory.com이전 내용 [머신러닝] 군집화: DBSCAN군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔puppy-foot-it.tistory.com군집화 실습 - 고객 세그먼테이션 ◆ 고객 세그먼테이션(Customer Segmentation): 다양한 기.. 2024. 10. 28.
[머신러닝] 군집화: DBSCAN 군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔진, 이미지 분할, 준지도 학습, 차원 축소puppy-foot-it.tistory.com이전 내용 [머신러닝] 군집화: GMM군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔puppy-foot-it.tistory.comDBSCAN ◆ DBSCAN(Density Based Spatial Clustering of Application.. 2024. 10. 27.
[머신러닝] 군집화: GMM 군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔진, 이미지 분할, 준지도 학습, 차원 축소puppy-foot-it.tistory.com이전 내용 [머신러닝] 군집화: 평균 이동군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔puppy-foot-it.tistory.comGMM(Gaussian Mixture Model) - GMM 군집화: 군집화를 적용하고자 하는 데이터가 여러 .. 2024. 10. 27.
[머신러닝] 군집화: 평균 이동 군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔진, 이미지 분할, 준지도 학습, 차원 축소puppy-foot-it.tistory.com이전 내용 [머신러닝] 군집화: 군집 평가군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔puppy-foot-it.tistory.com평균 이동(Mean Shift) 평균 이동 군집화는 데이터의 분포를 이용해 군집 중심점을 찾으며, 이를 위해 .. 2024. 10. 25.
[머신러닝] 군집화: 군집 평가 군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔진, 이미지 분할, 준지도 학습, 차원 축소puppy-foot-it.tistory.com이전 내용 [머신러닝] 군집화: k-평균군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔puppy-foot-it.tistory.com군집 평가(Clustering Evaluation) 대부분의 군집화 데이터 세트는 비교할 만한 타깃 레이블을 가.. 2024. 10. 25.
[머신러닝] 군집화: k-평균 군집화란? [머신러닝] 군집화 (Clustering)군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔진, 이미지 분할, 준지도 학습, 차원 축소puppy-foot-it.tistory.comk-평균 k-평균은 군집 중심점(centroid)이라는 특정한 임의의 지점을 선택해 해당 중심에 가장 가까운 포인트들을 선택하는 군집화 기법이다. 또한, 반복 몇 번으로 데이터셋을 빠르고 효율적으로 클러스터로 묶을 수 있는 간단한 알고리즘이다.군집 중심점은 선택된 포인트의 평균 지점으로 이동하고 이동된 중심점에서 다시 가까운 포인트를 선택, 다시 중심점을 평균 지점으로 이동하는 프로세스를 반복적으로 수행하며.. 2024. 10. 25.
[머신러닝] 군집화 (Clustering) 머신러닝 기반 분석 모형 선정  [머신러닝] 머신러닝 기반 분석 모형 선정머신러닝 기반 분석 모형 선정   지도 학습, 비지도 학습, 강화 학습, 준지도 학습, 전이 학습 1) 지도 학습: 정답인 레이블(Label)이 포함되어 있는 학습 데이터를 통해 컴퓨터를 학습시키는 방법(puppy-foot-it.tistory.com군집화(Clustering) [군집]군집은 비슷한 샘플을 클러스터 또는 비슷한 샘플의 그룹으로 할당하는 작업으로, 데이터 분석, 고객 분류, 추천 시스템, 검색 엔진, 이미지 분할, 준지도 학습, 차원 축소 등에 사용할 수 있는 도구로서 비지도 학습 방법 중 하나이다. 분류와 마찬가지로 각 샘플은 하나의 그룹에 할당되나, 분류와 달리 군집은 비지도 학습이다.클러스터에 관한 보편적인 정의는.. 2024. 10. 25.
[머신러닝] 차원 축소 - SVD 차원 축소란? [머신러닝] 차원 축소(Dimension Reduction)차원 축소(Dimension Reduction)차원 축소의 중요한 의미는차원 축소를 통해 좀 더 데이터를 잘 설명할 수 있는잠재적인 요소를 추출하는 데 있다.차원 축소: 매우 많은 피처로 구성된 다차원 데이터puppy-foot-it.tistory.comSVD(Singular Value Decompostion, 특이값 분해) [PCA vs SVD]PCA: 정방행렬만을 고유벡터로 분해SVD: 정방행렬 뿐 아니라 행과 열의 크기가 다른 행렬에도 적용 가능여기에서 각 행렬은 다음과 같은 성질을 가진다. U는 m × m 크기를 가지는 유니터리 행렬이다. Σ는 m × n 크기를 가지며, 대각선상에 있는 원소의 값은 음수가 아니며 나머지 원소의.. 2024. 10. 24.
[머신러닝] 차원 축소 - NMF 차원 축소란? [머신러닝] 차원 축소(Dimension Reduction)차원 축소(Dimension Reduction)차원 축소의 중요한 의미는차원 축소를 통해 좀 더 데이터를 잘 설명할 수 있는잠재적인 요소를 추출하는 데 있다.차원 축소: 매우 많은 피처로 구성된 다차원 데이터puppy-foot-it.tistory.comNMF(Non-Negative Matrix Factorization, 비음수 행렬 분해) 비음수 행렬 분해(Non-negative matrix factorization, NMF)는 음수를 포함하지 않은 행렬 V를 음수를 포함하지 않은 행렬 W와 H의 곱으로 분해하는 알고리즘이다. 행렬이 음수를 포함하지 않는 성질은 분해 결과 행렬을 찾기 쉽게 만든다. 일반적으로 행렬 분해는 정확한 해.. 2024. 10. 24.
[머신러닝] 차원 축소 - LDA 차원 축소란? [머신러닝] 차원 축소(Dimension Reduction)차원 축소(Dimension Reduction)차원 축소의 중요한 의미는차원 축소를 통해 좀 더 데이터를 잘 설명할 수 있는잠재적인 요소를 추출하는 데 있다.차원 축소: 매우 많은 피처로 구성된 다차원 데이터puppy-foot-it.tistory.comLDA(Linear Discriminant Analysis, 선형 판별 분석) [PCA vs LDA]- LDA는 PCA와 유사하게 입력 데이터 세트를 저차원 공간에 투영해 차원을 축소하는 기법이지만, 중요한 차이는 LDA는 지도학습의 분류(Classification)에서 사용하기 쉽도로 개별 클래스를 분별할 수 있는 기준을 최대한 유지하면서 차원을 축소한다.- PCA는 입력 데이터의 .. 2024. 10. 24.
728x90